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Abstract
There is a strong tendency towards discriminative approaches in brain–computer interface
(BCI) research. We argue that generative model-based approaches are worth pursuing and
propose a simple generative model for the visual ERP-based BCI speller which incorporates
prior knowledge about the brain signals. We show that the proposed generative method needs
less training data to reach a given letter prediction performance than the state of the art
discriminative approaches.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In brain–computer interface (BCI) research, we aim at
inferring some unknown mental state of the subject from an
observation of his/her brain activity. We try to decode the brain
activity as if the brain were a communication channel which
encodes an input message as brain activity. The decoding may
be performed in a probabilistic setting to express how certain
we are about what we inferred. In that case, we need to learn
distributions or conditional probabilities of the unknown and
observed variables and do statistical inference. There are two
main approaches in the field of statistical inference. They will
be discussed in a BCI setting in which we denote the mental
state by y and the brain activity by x.

In a generative modelling approach we learn the
distribution of the brain signals given the mental state p(x|y)

for x ∈ X and y ∈ Y , or the joint probability of the brain
signals and the mental state p(x, y). That means that we
obtain a model of how to generate the brain signals for
all possible mental states Y . Then, using Bayes’ theorem,
we can turn p(x|y) or p(x, y) into p(y|x) and perform a
maximum a posteriori (MAP) decoding to infer the most
probable state given the observed brain signals. Any prior
knowledge about the brain signals may be incorporated into
the generative model. Moreover, the decoding performance

gives an indication of how realistically we modelled the part
of the brain signal involved in encoding the mental state.

The alternative to generative modelling is the
discriminative approach where we estimate the conditional
probability p(y|x) directly without caring about modelling the
brain signals. This approach may be easier if the distribution
p(x|y) is complex [1].

In this paper, we focus on doing statistical inference in
one type of BCI system called the visual ERP-based speller
[2]. This system enables users to spell words by focusing their
attention on letters in a letter grid displayed on a computer
screen. While a sequence of controlled stimulus events over
time takes place on the letters, the electroencephalogram
(EEG) of the user is recorded. If we represent the stimulus
events for a given letter in the letter grid as a bitstring [3],
we may think of this bitstring as a codeword in a noisy
communication channel. The codeword entries with value 1
correspond to stimulus events in which the letter participated;
all other entries have value 0. In this way, we may represent all
the letters in the letter grid by codewords. The collection of
all codewords is the codebook. Each column of the codebook
represents a stimulus event over time and the 1-entries in the
column indicate which letters take part in that stimulus event.
For example, have a look at the sixth column of the codebook
in figure 1 (the sixth column is indicated by an arrow above the
codebook). This column shows that this stimulus event takes
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Figure 1. A sequence of stimulus events over time on a letter in the
letter grid is represented by a codeword which is a row in the
codebook.

place on {A,C,H } (and on {J,M,Q,U,X,Z, 2, 5, 7, 9} as
can be seen in the letter grid; however, their codewords are not
depicted in the figure).

The user should transmit the information about the
codeword of the letter he/she wants to communicate, the target
codeword. An entry with value 1 in this target codeword
is referred to as a target event, a 0 as a non-target event.
By producing different brain responses for the target and
non-target events on a letter, the user implicitly conveys the
information of its codeword. A common strategy for the
subject is to count the target events and to ignore the non-
target events. The resulting epochs following a target event
will contain attention-modulated components such as the P300
event-related potential (ERP) at larger amplitudes than the
epochs following a non-target event.

Now let us look at the statistical inference problem in
the speller system. Our task is to infer the letter of interest
by translating the information about the codeword from the
user’s EEG. We denote the codeword by c and the observed
multi-channel brain signals by b. A MAP decoding consists
of finding the most probable codeword from the set of possible
codewords given the brain signals

ĉ = argmax
c∈C

p(c|b), (1)

with C the codebook. Since p(c|b) = p(c, b)/p(b) and p(b)

is independent of the codewords, (1) is equivalent to

ĉ = argmax
c∈C

p(c, b). (2)

In practice, learning either the discriminative model
p(c|b) in (1) or the generative model p(c, b) in (2) is a hard
task. The variable b is continuously valued and has high
dimension, and c has as many dimensions as the length of the
codebook. Therefore, to learn p(b|c) or p(c|b) we would need
an infeasibly large training set.

Fortunately, independence assumptions in the brain
signals generation process can simplify the learning of the
joint p(c, b) in (2) significantly. For example, let us assume
that the brain signals collected at a particular stimulus event
bj are only dependent on codeword entry cj and not on other
stimulus events nor on brain signals at other stimulus events.
In that case, the joint p(c, b) can be factorized into products of

conditional probabilities p(bj |cj ) and marginal probabilities
p(cj ):

p(c, b) =
∏
j

p(bj |cj )p(cj ). (3)

Now the dimensionality of the learning problem has
decreased because both bj and cj have fewer dimensions than b
and c, respectively. Interestingly, we can again choose between
a generative approach that learns p(bj |cj ) and a discriminative
approach that learns p(cj |bj ). The latter approach turns
the problem into a per-bit classification problem. A MAP
decoding is then obtained by expressing the learned p(cj |bj )

as p(bj |cj ) with Bayes’ theorem, estimating the joint p(c, b)
by (3) and doing the decoding as in (2).

Some generative approaches were proposed in the original
visual speller paper by Farwell and Donchin [2], albeit without
a probabilistic framework. They involved area, peak-picking
and covariance measures in one EEG channel. The area
and peak-picking method assume that the response to certain
stimulus events is reflected by an increased EEG amplitude.
The covariance method estimates a template for the brain
response to stimulus events and uses the covariance of the
template and the observed brain signals as a similarity measure.
A similar method was proposed by Sutter for a different type
of speller system based on visual evoked potentials (VEP)
[4]. His method estimated the brain response to a sequence of
stimulus events. Also this method considered only one EEG
channel, whereas other EEG channels also contain relevant
information.

Lately, good results have been achieved with
discriminative approaches which treat the decoding as a per-
bit classification problem [5–9]. Remarkably, the frequently
used classifiers such as the support vector machine (SVM) and
stepwise discriminative analysis (SWDA) are not designed
to give proper probabilistic measures. Therefore, it is not
evident how to combine the classifier outputs for the different
stimulus events over time. Nevertheless, taking the inner
product of the codewords and the classifier outputs and
selecting the codeword with the largest outcome seem to give
satisfying results. Comparisons between the performance of
discriminative versus generative approaches are scarce but
seem to indicate that discriminative approaches outperform
the generative approaches [10].

Despite the current popularity of discriminative
approaches, we claim that generative approaches are worth
pursuing for the visual speller and more generally for BCI
research. Firstly, there is evidence that generative methods
need less training data to approach their asymptotic error
than discriminative methods [11, 12]. One explanation is
that in the generative model we restrict the space of possible
models and avoid overfitting by incorporating prior knowledge
about the data, whereas in a discriminative approach this
regularization of the model space is generally obtained by
a cumbersome cross-validation. In BCI a fast convergence
of the classification method is desirable since the acquisition
of training data is time consuming and boring. If the BCI
is to be used in patients, then a fast classification learning
curve is even more stringent due to the reduced attention
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Figure 2. Blockscheme of modulation process with codeword entry
cj as input of unknown systems Mn and Mt and hidden brain
response hj as output. A noisy version bj of hj is measured.

span [13, 14]. Secondly, since the decoding performance
indicates how well the generative model has represented the
reality, a comparison of different generative models results in
a better understanding of how the brain signals are generated.
Possibly, this information helps the BCI researcher to improve
his BCI paradigm and get brain signals with higher signal-to-
noise ratios.

The contribution of this paper is threefold. We present
a generative model that generates brain signals as a function
of a given stimulus sequence in the visual speller system.
We derive a simple maximum a posteriori (MAP) solution
for predicting the target letter given a multi-channel EEG
recording and the proposed generative model. Finally,
we compare its decoding performance with state-of-the-art
discriminative approaches.

2. Methods

2.1. Generative model of brain signals

Inspired by the psychophysiology literature which postulates
that ERPs have strong deterministic characteristics [15–17],
we model the response of the brain to a stimulus event as a
deterministic system. The system consists of operators Mn

and Mt which map a codeword entry cj to a multi-dimensional
brain response hj (figure 2). Each cj can take a value from
the set {0, 1}, whereas hj is a continuous-valued variable with
dimensions [Ns × Nch] with Ns being the number of time
samples and Nch the number of channels.

We assume that every stimulus event cj evokes a sensory
response n with a duration of SOA seconds, independent of the
value of cj . SOA stands for stimulus onset asynchrony and is
defined as the time interval between the start of one stimulus
event and the start of the next event. The sensory response n
has a dimension [Nn×Nch] with Nn = �SOA·fs� samples, �.�
being the nearest integer function. In addition, if the stimulus
event is a target event, i.e. cj = 1, a target-like modulation t is
evoked which lasts 0.6 s. This t has a dimension [Nt × Nch]
with Nt = �0.6 · fs� samples. We write this as

hj =
{
n if cj = 0,

t + n if cj = 1,
(4)

where we can make the dimensions correct by filling up n with
zeros.

We cannot observe hj directly. Instead, we may define an
epoch bj as an EEG segment in which we expect to capture
the hidden brain response hj and some non-task-related noise
ej . Here, the noise represents the background EEG, artefacts
and measurement noise. From now on we will refer to hj

as the hidden brain response and to bj as the observed brain
response.

If the modulation process behaves as a linear system in
the sense that the principle of superposition holds, the hidden
brain response h to a sequence of stimulus events c can be
constructed by simply adding up the responses hj for the
separate stimulus events cj at the time points where stimulus
event j takes place. This operation may be expressed as
a convolution or as a matrix multiplication using Toeplitz
matrices. In the latter case we write

h = St
T t + Sn

T n. (5)

The matrices St and Sn are constructed as follows (see also
figure 3). Given a length N codeword c with entry 1 specifying
a target event and entry 0 specifying a non-target event,
we construct a [1 × Ns]-padded codeword with sampling
frequency fs by adding zeros in between the codeword entries.
An [Nt × Ns] Toeplitz matrix St is built with the padded
codeword on the first row. Empty entries are set to 0. In a
similar way, we construct an [Nn × Ns] Toeplitz matrix Sn

from a [1 × N ] vector of ones. Note that the overlap of long-
latency brain signals at short SOA [18] is explicitly modelled
in (5).

Given an ERP plus additive noise, it follows from
the central limit theorem [19] that an averaging procedure
improves the signal-to-noise ratio proportionally to the number
of epochs used for averaging. Therefore, if e is uncorrelated
with h, then the average of the observed EEG epochs bj for
cj = 1 and for cj = 0 in a training set is estimates for t+n and
n, respectively. Alternatively, we may estimate t and n by the
least-squares (LS) solution which minimizes ε = E[b−h]2 in
a training set with h given by (5). The LS solution for t and n is
obtained by solving the following system of linear equations:(

StSt
T StSn

T

SnSt
T SnSn

T

) (
t

n

)
=

(
Stb

Snb

)
. (6)

A misalignment between the constructed hidden and
observed brain signals may have a significant impact on the
decoding. It is important to have the starting time of each
stimulus event at a large precision and to do the construction
of the hidden brain signals at a sufficiently large sampling
frequency. We found that a sampling frequency of 250 Hz
resulted in sufficiently small rounding errors.

2.2. MAP estimation

The MAP estimation decides what is the most likely codeword
ĉ given the observations b. A unique hidden brain response
exists for each of the different codewords in the codebook. In
that case, we can equivalently look for the most likely hidden
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Figure 3. Construction of hidden brain signal.

brain response ĥ given the observed brain signals b:

ĥ = argmax
h

p(h|b). (7)

Using Bayes’ theory we state p(h|b) = p(b|h)p(h)/p(b).
For the MAP estimation we may neglect p(b), since the term
is independent of h:

ĥ = argmax
h

[p(b|h)p(h)] . (8)

We assumed that the observed brain signals are noisy
versions of the hidden brain responses according to b = h + e.
In that case, the distribution p(b|h) is just the distribution
of the noise p(e). Let us consider h as a vector in a signal
vector space of dimension L. Under the reasonable assumption
that the noise is white in the frequency band of t and n and
Gaussian with zero mean, the noise in each channel has a
spherical distribution across the different components of that
vector space (see appendix A for details). Then, for channel k
the distribution of the noise p(ek) = p(bk|hk) is

p(bk|hk) = 1

(2πσ 2
k )L/2

exp

(
−‖bk − hk‖2

2σ 2
k

)
. (9)

Let us assume that we decorrelate the noise across
channels by a linear transformation W. The resulting
decorrelated noise eW is in fact independent across channels
with variance σ 2

W (see appendix B), and we may write the
distribution p(eW ) = p(bW |hW) as a product:

p(bW |hW) =
∏
k

1(
2πσ 2

W

)L/2 exp

(
−∥∥bW

k − hW
k

∥∥2

2σ 2
W

)
. (10)

It turns out that the MAP criterion of (8) is equivalent to
the following MAP criterion (see appendix B):

ĥ = argmax
h

p(bW |hW)p(h). (11)

Because the logarithm is monotonic, we can
perform the MAP decision on the log-likelihood ĥ =
argmaxh

[
ln

[
p(bW |hW)p(h)

]]
:

ĥ = argmax
h

∑
k

[
ln q −

∥∥bW
k − hW

k

∥∥2

2σ 2
W

]
+ ln p(h), (12)

with q = (
2πσ 2

W

)−L/2
.

We may set σ 2
W to 1 and neglect q since this term is

independent of hW . The resulting MAP decision is simply

ĥ = argmin
h

[∑
k

∥∥bW
k − hW

k

∥∥2 − 2 ln p(h)

]
. (13)

If the letters are randomly drawn from the set of letters in
the letter grid, the letter prior is flat and the MAP estimation
becomes equivalent to a maximum likelihood (ML) estimation.
In that case

ĥ = argmax
h

p(b|h) = argmin
h

∑
k

∥∥bW
k − hW

k

∥∥2
. (14)

The decoding rule in (14) says that we select the brain
response for which the sum of the squared values of the
difference between the whitened observed brain signals and
the transformed hidden brain signals over all components k
is minimal. This gives a MAP estimation under a number of
assumptions about the noise and under a flat letter prior.
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2.3. Summary of the method

GENERATIVE MODEL
INPUT: Set of training observations btrain and selected
codewords
Band-pass filter btrain, store as b

IF averaging:
Cut up b into epochs bj

Average all bj for which cj = 0, store as n

Average all bj for which cj = 1, subtract n, store as t

ELSEIF least-squares:
Construct matrices St and Sn

Build target and non-target templates t and n by (6)

END
DECODING
INPUT: Test observation btest

Band-pass filter btest, store as b

Whiten b by the whitening matrix W, save as bW

FOR each codeword c in the codebook
Construct matrices St and Sn

Build hidden response h using t and n by (5)

Whiten h by W, save as hW

FOR each channel k

Compute distance ‖bW
k − hW

k ‖2

END
END
Apply decoding rule (13)
Predict the letter corresponding to ĥ

3. Evaluation on real data

We used the visual speller data from six subjects (see [3]).
Each subject used two different codebooks, the RC and d10
codebook and two different stimulus types, the FLASH and
FLIP. The RC codebook represents the standard row–column
type of stimulus events. The codewords have length 72
corresponding to 6 stimulus rounds and minimum hamming
distance 12. The d10 codebook is a codebook for which
per stimulus events more letters participate. It consists of
length-72 codewords with a minimum hamming distance of
30. Given an SOA of 167 ms, one trial (in which one letter is
communicated) takes about 12 s independent of the codebook
used. The FLASH is the standard stimulus type which consists
of intensification of letters. The FLIP is an alternative stimulus
type which consists of rotation of blocks around the letters.
During the experiment, a 58-channel EEG was recorded at
250 Hz. Per stimulus type and per codebook, the subjects
spelled either 64 (RC) or 32 (d10) letters in the copy-spelling
mode. The letters were randomly drawn from the set of letters
in the letter grid.

The signal analysis was performed offline in Matlab (The
MathWorks, Inc.). The EEG channels had a common average
reference (CAR). The EEG was bandpass filtered between 0.5
and 10 Hz using FIR Bartlett–Hanning filters with order 1000.

We divided the data into several training and test sets.
The sizes of these sets are specified further on in the paragraph
Learning speed. On each training set, we trained the generative

models GEN1 and GEN2. We also implemented the winning
algorithms for the P300 speller data in BCI Competition II1

and III2 by Kaper et al [5] and Rakotomamonjy and Guigue
[8]. Both are discriminative approaches and apply a soft-
margin support vector machine (SVM) [20, 21]. We will refer
to these algorithms as DIS1 and DIS2.

GEN1. We obtained a target and non-target template from
the training set by averaging epochs. With these templates
and the codebooks from the test set, we constructed the
brain response h from (5) for each hypothetical target letter.
Then, we downsampled the observed and constructed brain
signals to 25 Hz and transformed these signals by a whitening
filter. The EEG data before the start of the stimuli were too
short to reliably estimate the whitening filter (note that we
need to estimate the N2

ch entries in the covariance matrix).
Therefore, we chose to estimate the whitening filter on
the (non-downsampled) training data and the pre- and post-
stimulus data from the test set. Prior to whitening, the last
eigenvector with zero eigenvalue due to the CAR operation
was removed from the whitening matrix. Finally, since the
letter prior was flat, we performed the decoding as in (14).

GEN2. We obtained a target and non-target template from the
training set by performing a least-squares estimation as in (6).
The remaining procedure was the same as in GEN1.

DIS1. Only channels Fz, Cz, Pz, Oz, C3, C4, P3, P4, PO7 and
PO8 were considered in the analysis. Although Kaper et al
applied a [0.5–30] Hz bandpassfilter, we used [0.5–10] Hz
filtered data for a fair comparison between the discriminative
and generative methods. The filtered signals were cut up in
0.600 s EEG epochs synchronized by the stimulus cues. These
epochs were downsampled to 25 Hz and normalized to the
[−1, 1] range. An SVM with a Gaussian radial basis function
(RBF) kernel [22] was trained on balanced training data.
The balancing was done by throwing away randomly selected
excessive non-target epochs. The SVM penalty parameter C
and the kernel width that gave the highest binary classification
scores on a tenfold cross-validation on each training set was
selected. Then, the trained SVM was applied to the data in the
test set. The inner products of the codewords and the classifier
outputs were calculated. The letter whose codeword showed
the largest inner product was selected. Since we expect that
balancing by throwing away training data affects the learning
speed, we also trained an SVM on the intact training data.
Furthermore, we investigated if the performance was affected
if no channel selection was done.

DIS2. Although Rakotomamonjy and Guigue applied a [0.1–
60] Hz bandpassfilter and an epoch length of 667 ms, we
used [0.5–10] Hz filtered data and 0.600 s EEG epochs,
again for a fair comparison between the discriminative and
generative methods. The epochs were downsampled to 25 Hz
and normalized to have zero mean and unit variance. If the
number of training letters was larger than or equal to 10, SVMs

1 P300 speller paradigm, Wadsworth Center, NYS Department of Health.
BCI Competition II, http://bbcide/competition/ii/.
2 P300 speller paradigm, Wadsworth Center, NYS Department of Health.
BCI Competition III, http://bbcide/competition/iii/.
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with linear kernels were trained on each partition consisting of
five training letters. For each partition the penalty parameter
C that gave the largest score Ccs = tp/(tp + fp + f n), with
tp being the number of true positives, fp the number of
false positives and f n the number of false negatives on the
remaining training partitions, was selected. We applied the
channel selection procedure as in [8]. If the number of
training letters was smaller than 10, one SVM was trained on
the complete training set and C that gave the largest score Ccs

in a tenfold cross-validation on the training set was selected.
Also here, the channel selection procedure was applied. Then,
the trained SVMs were applied to the data in the test set. The
inner products of the codewords and the (summed up) classifier
outputs were calculated. The letter whose codeword showed
the largest inner product was selected. We also trained a single
SVM without a channel selection procedure to evaluate the
effect of applying multiple classifiers and the channel selection
procedure.

We calculated the letter prediction performance as the
percentage of correctly classified test letters. For each
method, we evaluated the learning speed and the steady state
performance.

Learning speed. A learning curve shows the decoding
performance as a function of the number of training examples.
In our data, we constructed learning curves using the first 1, 2,
5, 10, 20 or 30 letters as training data for the RC data and the
first 1, 2, 5, 10 or 20 letters for the d10 data.

Steady state performance. The steady state performance is
the asymptotic letter prediction performance at an infinitely
large training set. We estimated the steady state performance
by considering the letter prediction performance using a
training set of 30 (RC) or 20 (d10) letters.

4. Results

In the following subsections, we first test which generative and
discriminative method performed best on the RC FLASH data.
In the last subsection, we compare the selected generative and
discriminative methods on the RC and d10 FLASH and FLIP
data.

4.1. GEN1 versus GEN2

The learning curves of the generative methods showed an
increase in letter prediction performance as we increased
the number of letters in the training set from 1 to 30 (see
figure 4). Both methods reached a letter prediction
performance of (close to) 100% with an training set size of
20 or 30 letters. The average performance was slightly higher
for the averaging-based generative model GEN1.

4.2. DIS1 versus DIS2

All the discriminative methods reached a letter prediction
performance of (close to) 100% with an training set size of
20 or 30 letters. Both the balancing of training data and
the channel selection in DIS1 harmed the learning speed (see
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Figure 4. Letter prediction performance as a function of training set
size for the generative models GEN1 which uses averaging (dark
bars) and GEN2 which uses least-squares (light bars) to obtain the
templates. The data are from six subjects who used the RC
codebook with the FLASH stimulus type. The bars represent
averages over subjects, and the error bars denote the average
standard deviation over subjects.
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Figure 5. Letter prediction performance as a function of training set
size for the SVM-based decoding for DIS1 with balanced training
data and channel selection (DIS1a), not balanced training data and
channel selection (DIS1b), not balanced training data without
channel selection (DIS1c), and for DIS2 which uses a linear instead
of a Gaussian RBF kernel with channel selection procedure and
multiple classifiers (DIS2a) and without channel selection and
single classifier (DIS2b). The data are from six subjects who used
the RC codebook with the FLASH stimulus type. The bars represent
averages over subjects, and the error bars denote the average
standard deviation over subjects.

figure 5). Most likely, for large enough training set sizes
the balancing does not hurt the SVM performance. The
channel selection procedure in DIS2 decreased the learning
speed.

For large training set sizes the selected RBF width in DIS1
was always large. For small training set sizes, occasionally a
small kernel width was selected in the cross-validation. We
found that the larger kernel widths resulted in better letter
prediction performance. This indicates that a linear kernel
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Figure 6. Letter prediction performance as a function of training set
size for DIS (light bars) and GEN (dark bars) for different stimulus
types in the RC codebook. The bars represent averages over
subjects, and the error bars denote the average standard deviation
over subjects.

may perform just as well as a Gaussian kernel on this type of
data. Since the Gaussian kernel is more prone to overfitting,
a linear kernel should give better results on small training
set sizes. In agreement, DIS2 (without a channel selection
procedure) performs better than DIS1 on small training set
sizes (see figure 5). For training sets consisting of five or
more training letters, DIS1 (with imbalanced training data
and without channel selection) and DIS2 perform equally
well.

4.3. Discriminative versus generative

In this section we compare the performance of the best
generative method GEN1 and the best discriminative method
DIS2b, which will be from now on referred to as GEN and
DIS, respectively. The steady state performance given a large
amount of training data was the same for both methods. They
reached close to 100% letter prediction performance on the
RC FLASH, RC FLIP and d10 FLIP data. On the d10 FLASH
data both methods reached a letter prediction accuracy of
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Figure 7. Letter prediction performance as a function of training set
size for DIS (light bars) and GEN (dark bars) for different stimulus
types in the d10 codebook. The bars represent averages over
subjects, and the error bars denote the average standard deviation
over subjects.

about 90%. Possibly, at 20 training letters the steady state
performance was not yet reached.

Despite the similar steady state performances, the learning
speed was clearly different (see figures 6 and 7). On the
RC FLASH data the generative method reached 90% letter
prediction accuracy with a small training set size consisting
of five training letters, whereas the discriminative method
needed two times more training data, respectively, to produce
this level of accuracy. On the FLIP RC and d10 data, the
faster learning speed of the generative method was even more
pronounced.

Even though both the generative and the discriminative
approach had a similar steady state performance, the generative
model gives more insight into where and when relevant
information is present in the EEG than the discriminative
method (see figure 8). The classifier weights in the
discriminative method merely show which combination of
channels and time points maximizes the classification score.
The weights reflect both the discriminative information and the
cancellation of noise signals. In contrast, the target template
in the generative method is the additive component in the

7
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Figure 8. Classifier weights in DIS2 (left plot) versus target template in GEN1 (right plot) for the RC FLASH data from one subject using
30 training letters. The x-axis represents time, and the y-axis represents the different channels. The location of channels is as follows: 1–10
is frontal, 11–19 is fronto-central, 20–27 is central, 28–36 is centro-parietal, 37–50 is parietal and 51–58 is occipital. Dark blue represents
strong negative values and dark red strong positive values.

response to a target event compared to a non-target event.
It therefore renders the discriminative information of each
channel at each time point. For example, for the subject in
figure 8 the target template for the occipital channels shows
positive values between 0 and 0.2 s. Furthermore, the fronto-
central, central and parietal channels show positive values
between 0.2 and 0.5 s where we expect the P300 component.
At the same time, the occipital channels show negative values.
Finally, the occipital channels show positive values between
0.5 and 0.6 s.

5. Conclusion

In discriminative learning, the aim is to discover the
dependence of an unobserved variable on an observed variable.
Implicitly, only the posterior probability p(y|x) is of interest.
Therefore, this type of learning is agnostic with respect to
the nature of the observations and the underlying processes
that generate them. In many applications such as image-based
digit recognition [23], text classification [24], computer vision
[25] and brain–computer interfaces [26] the discriminative
approach has been applied with success. Also the standard
decoding technique in speller system data is based on
discriminative modelling. The problem is reformulated as
finding the labels of each epoch using a classifier, for example
an SVM.

Generative methods, on the other hand, are based on
the joint p(x, y) or the conditional probability p(x|y), from
which the posterior p(y|x) can be obtained by means of
Bayes’ theorem. In some cases, these methods are preferable
to provide the learning algorithm with knowledge about the
problem at hand. However, the task of finding the probability
models may be hard if the model underlying the data set
is complex, e.g. non-Gaussian, and if the data are multi-
dimensional.

This is the first work that introduces a generative
modelling-based decoding method for visual speller data in
a probabilistic framework. The generative model constructs
templates for the brain response to each stimulus event. Using

these templates, a brain signal is generated as a function of the
stimulus sequence. Prior knowledge about overlap of the long-
latency brain signals is modelled explicitly when constructing
the brain response to a sequence of stimulus events. Under the
assumption that the noise is additive, Gaussian and white in the
frequency band of the task-related brain signals, an easy MAP
decision is obtained for predicting the letter. The decoding
rule explicitly states how letter frequency information can
be incorporated. A channel selection procedure as in earlier
generative modelling work for speller systems, which may
be computation intensive, is obsolete. This holds under
the assumption that the noise is Gaussian and has been
decorrelated across channels. If this assumption is violated, a
channel selection procedure could improve the results.

We compared the generative method to two state-of-the-
art discriminative methods on visual speller data from six
subjects which used two different codebooks and two different
stimulus types. The performance of the discriminative
methods on the RC FLASH data was in good agreement
with a recent large-scale study by Guger et al [27] who
reported an average letter prediction accuracy of 90% using a
discriminative method trained on 900 examples (which would
correspond to 12 training letters in our datasets). Our results
show that the proposed generative method competes with state-
of-the-art discriminative approaches for large training set sizes.
Moreover, the learning curve of the generative method-based
decoding is steeper than of the discriminative methods. The
generative method needed only half the amount of training
data to achieve 90% letter prediction accuracy. Therefore,
the method is very promising for BCI research where a
short acquisition of training data is desirable, especially when
working with patients.

The generative approach gives us more insight into the
modulation process of the brain in response to the stimuli
than the discriminative approach. The target template in
the generative model conveys which channels and which
time points contain discriminative information, whereas the
classifier weights in the discriminative method merely reflect
which combination of channels and time points results in a
good classification score.

8
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The good performance of the generative method indicates
that the model of the brain signal generation was close to
reality. Nevertheless, we think that the generative model may
be improved. For example, the fact that the performance
of the averaging-based generative model was better than that
of least-squares indicates that the superposition assumption
is too strong. That there are nonlinear effects in the speller
system was already pointed out by [18] who showed that target
responses with a small target-to-target (TTI) interval have
reduced amplitude, at least when the standard flash stimulus
is used. Modelling this and other nonlinear effects may lead
to a more realistic generative model and, correspondingly, an
even better performance.

Appendix A. Characterization of the noise

In order to perform the MAP decision, we need to previously
assume the following facts about the signal and the noise.

• The signal hk corresponding to channel k has a low-pass
characteristic with cut-off frequency f 0, and admits a
representation on an orthonormal basis of unitary signals
{φl(t)}, l = 1, . . . , L. This allows us to indistinctly refer
to hk as a signal or as a vector in an L-dimensional Hilbert
vector space.

• The noise ek has zero mean and follows a Gaussian
distribution. We also assume that the noise is white in
the relevant low-pass frequency range of the signal, with
a constant power spectral density equal to ηk/2.

We need to statistically characterize the noise in the signal
vector space defined above. This can be achieved by applying
basic linear systems theory ([28], p 28). Let �l(f ) be each
element of the signal basis, expressed in the frequency domain.
In that case, the variance of the noise σ 2

kl in each dimension of
the signal vector space is given by the projection of the noise
on each element of the basis:

σ 2
kl =

∫ f0

−f0

ηk

2
|�l(f )|2 df = ηkf0. (A.1)

Equation (A.1) shows that the variance of the noise is
identical for each component of the basis. Moreover, a
property of linear filters is that a Gaussian input leads to a
Gaussian output. Therefore, for the given assumptions about
the noise, the distribution in the vector space is described by
a spherical Gaussian, i.e. having a covariance matrix given by
C = σ 2

k I. We may write the distribution for each channel as

ek ∼ 1(
2πσ 2

k

)L/2 exp

(
−‖bk − hk‖2

2σ 2
k

)
. (A.2)

Appendix B. MAP estimation on decorrelated
signals

Let us assume that the noise in different channels can be
decorrelated by means of a linear transformation W, in the
sense that the noise is now uncorrelated across channels and
has the same variance σ 2

W,k = σ 2
W . The transformation matrix

W can be calculated on a part of the recording in which no

stimuli have been presented to the subject, or on the complete
recording if the noise is much stronger than the signal. Because
decorrelation means statistical independence for Gaussian
random variables, we can describe the joint distribution of
the noise for all channels eW ∼ p(hW + eW |hW) = p(bW |hW)

as

p(bW |hW) =
∏
k

1(
2πσ 2

W,k

)L/2 exp

[
−

∥∥bW
k − hW

k

∥∥2

2σ 2
W,k

]
(B.1)

=
∏
k

1(
2πσ 2

W

)L/2 exp

[
−∥∥bW

k − hW
k

∥∥2

2σ 2
W

]
. (B.2)

We make use of the property of lossless (full-rank)
linear transformations on probability distributions: p(AT x) =
(det A)−1p(x). Then the MAP criterion in (8) can be
reformulated as

ĥ = argmax
h

[p(W−1bW |W−1hW)p(h)] (B.3)

= argmax
h

[(det W)p(bW |hW)p(h)] (B.4)

= argmax
h

[p(bW |hW)p(h)]. (B.5)

This implies that performing the MAP decision on the
decorrelated signals as in (B.3) is equivalent to performing
the MAP decision on the original signals as in (8).
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